Berberis ALKALOIDS.

XXX. DYNAMICS OF THE ACCUMULATION OF THE

ALKALOIDS OF Berberis integerrima AND B. nummularia

A. Karimov, S. Meliboev, V. Olimov, and R. Shakirov UDC 547.944/945

Berberis integerrima Bge and B. nummularia Bge — ramose prickly bushes with a height of about 4 m — grow in Central Asia and are widely distributed in the territory of Uzbekistan [1].

In folk medicine, the roots, branches, leaves and fruit of these plants are used for the treatment of cardiovascular, gastro-intestinal, and psychic diseases and in cases of rheumatism and fractures [1]. A decoction of the roots, the bark of the stems, and the leaves possesses hemostatic properties, while the fruit decreases the coagulability of the blood [2]. A number of isoquinoline alkaloids have previously been isolated from the roots and epigeal parts of these plants [3, 4]. Depending on the growth site and vegetation period, the amount of the main alkaloid — berberine — in the roots of B. integerrima, and B. nummulara ranges from 0.17 to 0.9% [3, 5].

We have studied the dynamics of the accumulation of alkaloids in the epigeal parts of these plants gathered in Fergana province (Sarikurgan) in the flowering and the fruit-ripening periods (Table 1). The main alkaloids of young shoots of both plants were berberine, magnoflorine, and oxyacanthine. The largest amount of berberine was present in young shoots of *B. nummularia* in the flowering period. The main alkaloids of the leaves of *B. integerimma* and of *B. nummularia* were glaucine and thalicmidine. The latter was the main alkaloid of the flowers of both plants. The level of magnoflorine in *B. nummularia* in both periods was less than in *B. integerrima*. It can be seen from the facts given that young shoots in the flowering period may serve as a source of berberine, and the leaves as a source of glaucine.

TABLE 1. Dynamics of the Accumulation of Alkaloids in B. integerrima and B. nummularia

Plant and phase development	Plant organ	Sum of alkaloids, %	Content of main alkaloids, %				
			berber- ine	oxya- canth- ine	magno- florine	glau- cine	talic- midine
B. intergerrima	Shoots	1,21	0,24	0,21	0,32		
Flowering	Leaves	0,28	0,06	0,04	_	0,16	0,04
	Flowers	0,14	Tr.	0,02	_	0,01	0,10
Fruit ripening	Shoots	0,94	0,11	0,17	0,21		
	Leaves	0,14	Tr.	10,0	_	0,08	Tr.
	Fruit	0.04	Tr.	0,01			
B. nummularia	Shoots	1,43	0,29	0,24	0,16	_	_
Flowering	Leaves	0.32	0.06	0.02		0,01	0,17
	Flowers	0,16	Tr.	0.01	_	0,02	0,06
Fruit ripening	Shoots	1,11	0.17	0,11	0,14	_	
	Leaves	0,16	Tr.	_	_	_	
	Fruit :	0,08	Tr.	0,02			

Andizhan State Medical Institute. Institute of Chemistry of Plant Substances, Academy of Sciences of the Uzbekistan Republic, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 472-473, May-June, 1993. Original article submitted November 30, 1992.

REFERENCES

- 1. A.A. Fedorov, Plant Resources [in Russian], Nauka, Leningrad (1985), p. 20; Flora of Uzbekistan [in Russian], Izd. Akad. Nauk UzSSR, Tashkent, Vol. II (1953), p. 514.
- 2. T. Z. Dzhumabaev, The Pharmacology of Bigflower Barberry (*Berberis oblonga (integerrima*)) and Moneyleaf Barberry (*B. nummularia*) [in Russian]: Author's abstracts of Candidate's Dissertation, Ryazan' (1972).
- 3. L. P. Naidovich, E. A. Trutneva, O. N. Tolkachev, and V. D. Vasil'eva, Farmatsiya, No. 4, 33 (19766).
- 4. A. Karimov, The Alkaloids of Some *Berberis* Species [in Russian], Author's abstract of Candidate's Dissertation, Tashkent (1978).
- 5. V. D. Vasil'eva and L. P. Naidovich, Farmatsiya, No. 4, 33 (1972).